Prerequisites:
3-0-0-9
Course Contents
Groups, Basic properties, Isomorphism theorems, Permutation groups, Sylow Theorems, Structure theorem for finite abelian groups, Rings, Integral domains, Fields, division rings, Ideals, Maximal ideals, Euclidean rings, Polynomial ring over a ring, Maximal & Prime ideals over a commutative ring with unity, Prime avoidance theorem and Chinese Remainder theorem, Field Extension, Cramer's rule, Algebraic elements and extensions, Finite fields. Determinants and their properties, Systems of linear equations, Eigen values and Eigenvectors, Caley Hamilton theorem, Characteristic and minimal polynomial, diagonalization, Vector spaces, Linear transformations, Inner product spaces.
Topics
Current Course Information
Instructor(s):
Number of sections:
Tutors for each section:
Schedule for Lectures:
Schedule for Tutorial:
Schedule for Labs: