अपनी प्राथमिकता निर्धारित करें
फ़ॉन्ट स्केलिंग
अप्राप्ति
पृष्ठ अनुमापन
अप्राप्ति
रंग समायोजन
भा.प्रौ.सं.कानपुर
Unique Ferromagnetism in α-Mn Nanorods

Abhinav Prakash, Krishanu Biswas and Somnath Bhowmick

In the periodic table, Mn is located just before the ferromagnetic family of metals, namely, iron, cobalt and nickel. However, it's allotrope at room temperature (a-Mn) is known to be paramagnetic. Thus, at room temperature, Mn cannot achieve the magnetic strength of its fellow ferromagnetic metals. Magnetism in ferromagnetic metals can be described in terms of direct exchange interaction, where the coupling strength depends on the ratio (l) of the inter-atomic distance to the radius of d-shell of an atom in a material. In case of Mn, lvalue is just below 1.5, which is slightly less than that for its ferromagnetic neighbours. This implies that, increasing the separation between Mn atoms will favourably alter the ratio and leading to ferromagnetism. This is normally achieved either by alloying Mn with a non-magnetic element or by growing epitaxial layer of Mn on Fe or Co or Ni. The ferromagnetic ternary alloys containing Mn, known as Heusler alloys (such as Cu2MnAl) are typical examples of the first type. The other way of imparting ferromagnetism in Mn is by a technique in which an epitaxial layer of Mn grown on Fe (100) exhibits a net magnetic moment.

However, it may be possible to induce ferromagnetism in pure metallic a-Mn by altering the morphology of the Mn crystallites, i.e. preparing 1D nanostructure. We report the ferromagnetic order in pure and freestanding a-Mn nanorods prepared by ball milling at low temperature (152K). The bulk a-Mn is known to be a complicated system with Mn having a tendency towards anti-ferromagnetic order. It is worthwhile to note that Schull and Wilkinson 16 have demonstrated earlier that Mn can undergo transition from paramagnetic to anti-ferromagnetic state below its Neel temperature of 100K. However, there is no report in the literature on ferromagnetic behaviour of either bulk or nano-structured a-Mn. We observe for the first time that, indeed, ferromagnetic order can be induced in the nanorods, which can be explained by considering surface magnetism. The DFT calculations indicates that the origin of such ferromagnetism is due to surface atoms that are less co-ordinated, giving rise to ferromagnetic surface with antiferromagentic core.

Figure: (a) Morphology of a-Mn nanorod and schematic representation; (b) VSM measurements of the cryomilled nanorods showing ferromagnetic hysteresis loop and (c ) Actual spin density calculated using DFT simulations. A vertical cross-section of the nanorod is shown in the figure, where the atoms in top layer (red box) belongs to (110) surface. Ferrmoagnetic and antiferromagnetic region is denoted by the red and blue box, respectively.
Figure: (a) Morphology of a-Mn nanorod and schematic representation; (b) VSM measurements of the cryomilled nanorods showing ferromagnetic hysteresis loop and (c ) Actual spin density calculated using DFT simulations. A vertical cross-section of the nanorod is shown in the figure, where the atoms in top layer (red box) belongs to (110) surface. Ferrmoagnetic and antiferromagnetic region is denoted by the red and blue box, respectively.

Reference:
J. App. Physics, 121, 2017, 084304

अन्य विशिष्ट अनुसंधान

यांत्रिक अभियांत्रिकी

SAE Formula Racing Car- designed & BUILT BY Students of IIT Kanpur

SAE Formula Racing Car- designed & BUILT BY Students of IIT KanpurThe Society of Automotive Engineers (SAE) club of IITK participated in the 9th e...

अधिक जानें
वांतरिक्ष अभियांत्रिकी

Testing and Trajectory Analysis of DFDR (Deployable Flight Data Recorder Unit)

PI : Prof T.K. SenguptaThe biological importance of nitric oxide (NO) is well established. It plays key roles as a signaling molecule in a number of m...

अधिक जानें
भौतिक विज्ञान

Variable gaseous plasma focused ion beams and creation of high aspect ratio microstructures

Sudeep BhattacharjeeIon beam tools have become inevitable in today's science and technology research and industrial applications. The application span...

अधिक जानें
रसायनिक विभाग

Synthesis of Carba-aminosugars, and aza- and imnosugars as glycosidic inhibitors starting from readily available sugar derivatives and L-ascorbic acid

PI: Prof Y.D.VankarThe main objective in this proposal is to develop new synthetic approaches towards some known and some unknown designed glycosidase...

अधिक जानें
सिविल अभियांत्रिकी

Study into Cracking of Deck Slab and Girders of Flyovers at Dholpuron Nh3 and Development of Strengthening Scheme

PI: Prof. Durgesh C. RaiThe two flyover structures of Dholpur-Morena section of NH-3 located at Dholpur developed inclined shear cracking in their pre...

अधिक जानें
भौतिक विज्ञान

STABLE Superhydrophobic Coating on Steel Surfaces for Corrosion Prevention and Water Drag Reduction

PI: Prof. KrishnacharyaSteel is one of the most commonly used material now a days in every aspect of human life and corrosion is the most important is...

अधिक जानें
यांत्रिक अभियांत्रिकी

Shapes, Stability and Dynamics of Granular Minor Planets

PI: Prof. Ishan SharmaObjects such as asteroids and planetary satellites are called minor planets. Ongoing research suggests that these objects may no...

अधिक जानें
विद्युत अभियांत्रिकी

Shape-Based Fluorescence Optical Tomography for Grading of Dysplasia in Cervical Cancer Progression

PI: Prof. Naren NaikCo-PI: Prof. Asima PradhanTumor detection in various parts of the body by optical tomographic methods is often a limited data prob...

अधिक जानें
सिविल अभियांत्रिकी

Science and Technology of Water Harvesting and Management in the Medieval Fort of Kalinjar in Central India

PI: Prof. Shivam TripathiCO-PI: Prof. Naren Naik          Prof. Javed MalikThe project aims at understanding the science and ...

अधिक जानें